Incorporate External Control Data in New Clinical Trial Design and Analysis

Lanju Zhang
Abbvie Inc

October 16, 2020
Disclaimer

This presentation was sponsored by AbbVie. AbbVie contributed to the design, research, and interpretation of data, writing, reviewing, and approving the publication. This presentation contains no proprietary AbbVie data.

Lanju Zhang is an employee of AbbVie Inc. and may own AbbVie stock.
Acknowledgements

Thanks to my colleagues

- Ivan Chan
- Li Wang
- Zailong Wang
- Su Chen
- Hongwei Wang
- Yihua Gu
- Yang Yang
Outline

- Introduction to external control data incorporation in trial design and analysis
 - Regulatory landscape
 - Data
 - Incorporation spectrum
 - Statistical methodology

- Two Applications
 - Control substitution to augment in-trial control arm
 - Synthetic Control arm

- Conclusions
Introduction: Incorporation into Trial Design and Analysis

- Traditionally
 - Trial design assumptions
 - Trial results contextualization
 - Non-inferiority trial margin
Introduction: Regulatory Landscape

- Adaptive Design Guidance (FDA, 2019a)
 - Bayesian Adaptive Designs
 - Explicit borrowing of information from external sources, e.g., previous trials, natural history studies, and registries, via informative prior distributions to improve the efficiency of a trial.
Introduction: Regulatory Landscape

- Complex and Innovative Design Guidance (FDA, 2019b)
 - When external information is explicitly borrowed into a design, such as in a Bayesian framework, a rationale for the borrowing and an explanation of how the prior distribution was formed from the prior information.
 - If prior information is being used, details about the source and choice of the prior information, its relevance to the proposed trial design, and an explanation of steps taken to ensure that all relevant prior information is accounted for, so that the prior information does not lead to misleading results.
 - For Bayesian inference, appropriate alternative trial characteristics should be considered, such as the maximum posterior probability of the null across values of the test statistic in the rejection region or the maximum posterior probability of a minimally clinically significant treatment effect across values of the test statistic outside of the rejection region (Ref. 5). It is also often informative to assess the sensitivity of trial operating characteristics to the choice of a prior distribution.
Introduction: Incorporation Spectrum

- **No borrowing/RCT**
 - Control vs Treatment

- **borrowing on top**
 - H-Control + Control vs Treatment

- **borrowing to substitute**
 - H-Control + Control vs Treatment

- **All borrowing/single arm**
 - H-Control vs Treatment
Introduction: Data Selection

- Pocock (1976) proposed guidelines of incorporating historical data (six criteria to be relevant); suggested a Bayesian approach
 - Patient Population
 - Prior and Concomitant therapy
 - Control treatment
 - Endpoints/outcome measures
 - Regions
 - SOC/medical practice
 - Contemporaneity
 - Analysis methods
Introduction: Control Data

<table>
<thead>
<tr>
<th>Control type</th>
<th>Concurrent</th>
<th>concurrent + external RCT data</th>
<th>external RCT data</th>
<th>RWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence strength</td>
<td>strongest</td>
<td>Strong when the results of the two control sources are similar</td>
<td>fair</td>
<td>fair</td>
</tr>
<tr>
<td>Data quality for decision making</td>
<td>best</td>
<td>Good when the results of the two control sources are similar</td>
<td>fair</td>
<td>fair</td>
</tr>
<tr>
<td>Regulatory acceptance</td>
<td>most acceptable</td>
<td>Acceptable</td>
<td>acceptable</td>
<td>negotiable</td>
</tr>
<tr>
<td>Timeline</td>
<td>longest</td>
<td>shorter</td>
<td>shortest</td>
<td>shortest</td>
</tr>
<tr>
<td>Cost</td>
<td>largest</td>
<td>lower</td>
<td>lowest</td>
<td>lowest</td>
</tr>
<tr>
<td>Potential area of application</td>
<td>diseases with SOC</td>
<td>diseases with SOC</td>
<td>rare diseases, life-threatening conditions, or pediatric trials</td>
<td>rare diseases, safety evaluation</td>
</tr>
<tr>
<td>Statistical Methods</td>
<td>standard</td>
<td>Bayesian/frequentist</td>
<td>Matching or other causal inference methods for confounding control</td>
<td>matching or other causal inference methods for confounding control</td>
</tr>
<tr>
<td>Registration</td>
<td>yes</td>
<td>potential</td>
<td>potential</td>
<td>potential</td>
</tr>
</tbody>
</table>
Introduction: Statistical Methodology

- Bayesian Methods
 - Data selection
 - Summary data

- Propensity Score
 - Data selection
 - Individual-level data
Introduction: Statistical Methodology

- Pocock (1976) proposed guidelines of incorporating historical data (six criteria to be relevant); suggested a Bayesian approach

- Historical data summarization: Meta-analytic Predictive approach (Neuenchwander et al, 2010)

- Bayesian historical data borrowing
 - Power Prior (Ibrahim and Chen, 2000, Psioda and Ibrahim, 2019)
 - Commensurate prior (Hobbs et al, 2011)
 - Mixture Prior (Schmidli et al, 2014)

- Frequentist approach (reviewed in Viele et al 2014)
Application 1: Control Substitution

- Data

Historical Control
- $y_{0,h}, \sigma^2_{0,h}, N_{0,h}$

Current Control
- $y_{0,c}, \sigma^2_{0,c}, n_{0,c}$

Current Treatment
- $y_{1}, \sigma^2_{1}, n_{1}$

- Continuous endpoint
- Normally distributed, control mean μ_0, treatment mean μ_1, known variance
- Interest: comparing μ_0 and μ_1
Application 1: Control Substitution

- Bayesian: μ_0 and μ_1 are random quantities

- Priors
 - Control prior based on historical data
 - Treatment prior: noninformative

- Posteriors
 - μ_1, μ_0
 - Trial success: $\Pr(\mu_1 - \mu_0 > \Delta | D_0, D_1) > p_0$
Application 1: Control Substitution

- Power Prior Approach (Ibrahim and Chen, 2000)

 - Ibrahim and Chen (2000) violates likelihood principle
 - Proposed to normalize the prior

- Prior and posterior for μ_1 and μ_0
 - Posterior is proportion to the following

$$\alpha_0^{a-1}(1-\alpha_0)^{b-1} \frac{L(\mu_0|D_0)^{\alpha_0} \pi_0(\mu_0)}{\int L(\mu_0|D_0)^{\alpha_0} \pi_0(\mu_0) d\mu_0} \pi_1(\mu_1) L(\mu_0, \mu_1|D_1)$$

- Prior for power α_0
- Normalized
- Prior for μ_0
- Prior for μ_1
- Likelihood of D_1

- a, b hyperparameters
- α_0 doesn’t depend on in-trial data
Application 1: Control Substitution

- Commensurate Power Prior Approach (Hobbs et al, 2011)
 - Assume different parameters for historical and current control data

- Prior and posterior for $\mu_1, \mu_0, \text{and } \mu_{0h}$
 - Posterior is proportion to the following

\[
\frac{(L(\mu_{0h}|D_0)p(\mu_0|\mu_{0h}, \tau))^{\alpha_0}}{\int (L(\mu_{0h}|D_0)p(\mu_0|\mu_{0h}, \tau))^\alpha_0 d\mu_{0h} d\mu_0} p(\alpha_0|\tau)p(\tau)\pi_1(\mu_1)L(\mu_0, \mu_1|D_1)
\]

- μ_{0h}: historical control mean
- τ: between historical trial variability, or commensurability
- $p(\mu_0|\mu_{0h}, \tau)$: control prior, eg, $N(\mu_{0h}, \tau^2)$
- $p(\alpha_0|\tau)$: prior of α_0 depends on τ, eg, $\text{beta}\left(\frac{\alpha_0}{\tau^2}, 1\right)$
Application 1: Control Substitution

- Robust Mixture Prior Approach (Schmidli et al, 2014)
 - Hierarchical modeling and meta-analytic predictive prior

- Prior μ_0
 - $\gamma_{0,h} \sim N(\mu_{0h}, \sigma^2), h = 1, 2, \ldots H$
 - $\mu_{01}, \ldots, \mu_{0H}, \mu_0 \sim N(\theta, \tau^2)$
 - θ, flat prior and τ half normal prior
 - Effective sample size:
 - Mixture based on Kullback-Leibler divergence
 - Robustize by adding a non-informative component

- Prior for μ_1 noninformative

- R Package RBest
Application 1: Control Substitution

- Proposed approach (L Zhang et al, 2020)
 - Build borrowing into design

- Basic ideas
 - Summary data, eg, mean, variance and between trial variability
 - Effective sample size as an upper bound for borrowing size
 - Conjugate prior
 - Commensurability depends on bias (=historical control – in trial control mean)
 - Explicit relationship between bias and error rates
 - Final borrowing size determined by control of error rate inflation
 - A streamlined process from data selection to design and analysis
Application 1: Control Substitution

- **Priors**
 - MAP: $\mu_0 \sim N \left(y_{0,h}, \frac{\sigma_{0,h}^2}{n_{0,h}} \right)$ from meta analysis
 - $n_{0,h}$: borrowing size
 - Treatment prior: noninformative

- **Posteriors**
 - Control: $\mu_0 \sim N \left(\frac{n_{0,h} \sigma_{0,c}^2}{n_{0,h} \sigma_{0,c}^2 + n_{0,c} \sigma_{0,h}^2} y_{0,h} + \frac{n_{0,c} \sigma_{0,h}^2}{n_{0,h} \sigma_{0,c}^2 + n_{0,c} \sigma_{0,h}^2} y_{0,c}, \frac{\sigma_{0,h}^2 \sigma_{0,c}^2}{n_{0,h} \sigma_{0,c}^2 + n_{0,c} \sigma_{0,h}^2} \right)$
 - Treatment: $\mu_1 \sim N \left(y_1, \frac{\sigma_1^2}{n_1} \right)$
Application 1: Control Substitution

- Trial success: \(\Pr(\mu_1 - \mu_0 > \Delta | \text{Data}) > p_0 \)
 - Assume \(\Delta = 0, p_0 = 1 - \alpha = 95\% \) throughout

- Design properties
Application 1: Control Substitution

Design Properties

- Pr(trial success | true trt diff) depends on
 - treatment difference $\mu_{1,f} - \mu_{0,f}$
 - Bias of historical control data $(y_{0,h} - \mu_{0,f})$
 - The proportion of historical control patients a_0
 - $a_0 = (#\text{historical control patients}) / (#\text{combined control patients})$

$$\text{Pr(Trial success)} = \text{Pr}(\text{Pr}(\mu_{1} - \mu_{0} > 0 | Data) > p_0)$$

Effect size

$$= \Phi \left(\frac{(\mu_{1,f} - \mu_{0,f})}{\sigma \sqrt{\frac{1}{n_1} + \frac{1-a_0}{n_{0,h} + n_{0,c}}}} - \frac{a_0(y_{0,h} - \mu_{0,f})}{\sigma \sqrt{\frac{1}{n_1} + \frac{1-a_0}{n_{0,h} + n_{0,c}}}} - \Phi^{-1}(p_0) \frac{\sqrt{\frac{1}{n_1} + \frac{1}{n_{0,h} + n_{0,c}}}}{\frac{1}{n_1} + \frac{1-a_0}{n_{0,h} + n_{0,c}}} \right)$$

Bias

Borrowing fraction a_0
Application 1: Control Substitution

Design Properties

- No borrowing \((a_0 = 0) \)
 - Type I error rate is exactly \(\alpha \)
 - Power and sample size are exactly as usual

- With borrowing \((a_0 > 0) \)
 - When there is no bias, there is slight type I error rate deflation and power gain.
 - When there is bias, type I error rate and power change depends on the bias direction; its magnitude depends on borrowing fraction
 - If \(a_0 = 1 \), all control data is historical, a single arm trial
Application 1: Control Substitution

Trial Design Process

- **Step 0**: Historical Data Summary
- **Step 1**: Sample size and power without borrowing
- **Step 2**: Power with reduced control arm without borrowing
- **Step 3**: Bias and borrowing impact
- **Step 4**: Determine final sample sizes
Application 1: Control Substitution

Application: Rheumatoid Arthritis POC trial

- **Step 0: Historical data summary (MAP prior)**
 - identify relevant historical trials (Pocock criteria, eg)

Historical Trial data (DAS28-CRP)

<table>
<thead>
<tr>
<th>Phase</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>176</td>
<td>-0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>-0.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- Meta analysis
 - Mean: -0.71; 95% CI: (-0.919, -0.5); effective sample size: 116
Application 1: Control Substitution

- **Step 1**: determine balanced sample size without borrowing

\[n_1 = \frac{2(\Phi^{-1}(1 - \alpha) + \Phi^{-1}(1 - \beta))^2 \sigma^2}{\delta^2} \]

- \(\delta = 0.88, \alpha = 0.05, \beta = 0.2, \sigma = 1.5, n_1 = 36 \)

- **Step 2**: for different randomization ratio \(k = n_1 : n_{0,c} \) (eg, \(k = 2, 3, 4 \) means randomization ratio 2:1, 3:1, 4:1), determine power without borrowing.

\[1 - \beta_1 = \Phi \left(\frac{2}{1 + k} \left(\Phi^{-1}(1 - \alpha) + \Phi^{-1}(1 - \beta) \right) - \Phi^{-1}(1 - \alpha) \right) \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(1 - \beta_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80%</td>
</tr>
<tr>
<td>3/2</td>
<td>72%</td>
</tr>
<tr>
<td>2</td>
<td>65%</td>
</tr>
<tr>
<td>3</td>
<td>54%</td>
</tr>
</tbody>
</table>

Power using different randomization ratio \(k \) with \(\alpha = 0.05 \) and \(1 - \beta = 80\% \) without borrowing
Application 1: Control Substitution

- **Step 3**: Assume bias is a proportion \(r \) of the treatment difference, i.e.,
 \[|\gamma_{0,h} - \mu_{0,f}| = r\delta. \]
 Recall \(a_0 = \frac{n_{0,h}}{n_{0,h} + n_{0,c}} \).
 Given \(k, r, \) and \(a_0 \),

 Type I error rates
 \[
 \Phi \left[\pm \sqrt{2} ra_0 \left(\Phi^{-1}(1 - \alpha) + \Phi^{-1}(1 - \beta) \right) - \Phi^{-1}(p_0) \sqrt{1 + k(1 - a_0)} \right] \frac{1}{\sqrt{1 + k(1 - a_0)^2}}
 \]

 Power
 \[
 \Phi \left[\sqrt{2} (1 + ra_0)(\Phi^{-1}(1 - \alpha) + \Phi^{-1}(1 - \beta)) - \Phi^{-1}(p_0) \sqrt{1 + k(1 - a_0)} \right] \frac{1}{\sqrt{1 + k(1 - a_0)^2}}
 \]

 - \(\delta = -0.88, \ r = 0.24 \)
 - These formulae are general and don’t depend on sample sizes, effect size, standard deviation etc.
Application 1: Control Substitution

- **Step 3**: select parameters based on impact on type I error rate and power;

 Type I error rate (Error) and power for \(k=2, \alpha=0.05, 1-\beta=80\% \)

 Red cells for scenarios with power<70% or type I error rate >0.1.

<table>
<thead>
<tr>
<th>(a_0) (\times r)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error</td>
<td>Power</td>
<td>Error</td>
<td>Power</td>
<td>Error</td>
<td>Power</td>
</tr>
<tr>
<td>0.5 0.029</td>
<td>0.012</td>
<td>0.796</td>
<td>0.014</td>
<td>0.753</td>
<td>0.010</td>
<td>0.706</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
<td>0.868</td>
<td>0.053</td>
<td>0.896</td>
<td>0.071</td>
<td>0.920</td>
</tr>
<tr>
<td>0.6 0.027</td>
<td>0.018</td>
<td>0.831</td>
<td>0.011</td>
<td>0.780</td>
<td>0.007</td>
<td>0.722</td>
</tr>
<tr>
<td></td>
<td>0.041</td>
<td>0.907</td>
<td>0.060</td>
<td>0.934</td>
<td>0.085</td>
<td>0.955</td>
</tr>
<tr>
<td>0.7 0.028</td>
<td>0.016</td>
<td>0.863</td>
<td>0.009</td>
<td>0.807</td>
<td>0.005</td>
<td>0.740</td>
</tr>
<tr>
<td></td>
<td>0.046</td>
<td>0.939</td>
<td>0.072</td>
<td>0.962</td>
<td>0.108</td>
<td>0.977</td>
</tr>
<tr>
<td>0.8 0.031</td>
<td>0.016</td>
<td>0.893</td>
<td>0.008</td>
<td>0.834</td>
<td>0.004</td>
<td>0.758</td>
</tr>
<tr>
<td></td>
<td>0.055</td>
<td>0.963</td>
<td>0.092</td>
<td>0.980</td>
<td>0.144</td>
<td>0.990</td>
</tr>
</tbody>
</table>

Note: In each cell the top value for bias favoring null and the bottom for bias alternative

- \(a_0 \): fraction of historical control patients among all control patients;
- \(r \): bias/(treatment difference);
- \(k \): randomization ratio
Application 1: Control Substitution

- **Step 3**: select parameters based on impact on type I error rate and power

Type I error rate (Error) and power for $k=3$, $\alpha=0.05$, $1-\beta=80\%$

Red cells for scenarios with power<70% or type I error rate >0.1.

<table>
<thead>
<tr>
<th>a_0/r</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error</td>
<td>Power</td>
<td>Error</td>
<td>Power</td>
<td>Error</td>
<td>Power</td>
</tr>
<tr>
<td>0.6</td>
<td>0.022</td>
<td>0.812</td>
<td>0.015</td>
<td>0.762</td>
<td>0.009</td>
<td>0.705</td>
</tr>
<tr>
<td></td>
<td>0.033</td>
<td>0.855</td>
<td>0.049</td>
<td>0.891</td>
<td>0.069</td>
<td>0.920</td>
</tr>
<tr>
<td>0.7</td>
<td>0.022</td>
<td>0.866</td>
<td>0.013</td>
<td>0.813</td>
<td>0.007</td>
<td>0.749</td>
</tr>
<tr>
<td></td>
<td>0.036</td>
<td>0.908</td>
<td>0.058</td>
<td>0.939</td>
<td>0.087</td>
<td>0.961</td>
</tr>
<tr>
<td>0.8</td>
<td>0.025</td>
<td>0.913</td>
<td>0.013</td>
<td>0.862</td>
<td>0.006</td>
<td>0.795</td>
</tr>
<tr>
<td></td>
<td>0.045</td>
<td>0.948</td>
<td>0.076</td>
<td>0.970</td>
<td>0.121</td>
<td>0.984</td>
</tr>
</tbody>
</table>

Note: In each cell the top value for bias favoring null and the bottom for bias alternative

- a_0: fraction of historical control patients among all control patients;
- r: bias/(treatment difference);
- k: randomization ratio
Application 1: Control Substitution

- **Step 4**: determine sample sizes
 - $n_1 = 36$
 - $k = 2:1$ and $a_0 = 0.6$
 - $n_{0,c} = n_1 / k = 18$, $n_{0,h} = \frac{n_{0,c} a_0}{1-a_0} = 27$
 - Ensure $n_{0,h} \leq n_{\text{max}} = 117$

- In the data analysis, evaluate $\Pr(\mu_1 - \mu_0 > \Delta | Data)$
 and check whether it is $> p_0$.

![Diagram](https://via.placeholder.com/150)
Application 1: Control Substitution

- **Step 4**: determine sample sizes
 - $n_1 = 36$
 - $k = 2:1$ and $a_0 = 0.6$
 - $n_{0,c} = n_1 / k = 18$, $n_{0,h} = \frac{n_{0,c} a_0}{1 - a_0} = 27$
 - Ensure $n_{0,h} \leq n_{\text{max}} = 117$

- In the data analysis, evaluate $\Pr(\mu_1 - \mu_0 > \Delta | \text{Data})$ and check whether it is $> p_0$.

![Diagram showing historical control and current control compared to current treatment](image)
Application 1: Control Substitution

- Dynamic borrowing
 - Determine actual borrowing size depends on observed difference between controls
 - Larger difference, borrowing less

\[
\begin{align*}
\text{Historical control} & : n_{0,h} = ?? \\
\text{Current control} & : n_{0,c} = 20 \\
\text{Current treatment} & : n_1 = 40
\end{align*}
\]
Application 1: Control Substitution

Regulatory Interaction

- Teleconference with FDA
 - Initial feedback
 - Only in-trial data will be considered
 - Meeting minutes
 - Depending on the data selection and stat methods, can be considered
 - SAP submission
 - No comments received
Application 1: Control Substitution

Regulatory Interaction

- Teleconference with FDA
 - Initial feedback
 o Only in-trial data will be considered
 - Meeting minutes
 o Depending on the data selection and stat methods, can be considered
 - SAP submission
 o No comments received
Application 1: Control Substitution

Results

- Planned borrowing \((n_{0,h} = 20) \)
 - Posterior prob > 95%

- Dynamic borrowing \((n_{0,h} = 60) \)
 - Posterior prob was very similar
Application 2: Synthetic Control Arm

- Subject-level data available
 - Similar trial settings
 - Covariate data
 - Outcome data

- Propensity score approach
 - Matching
 - Stratification
 - Inverse probability weighting
 - Regression
Application 2: Synthetic Control Arm

- Process for integrity
 - Independent team doing matching
 - Prespecified rules
 - Masked from outcome
 - Matching was done after enrollment complete and before unblinding
 - A secure location for covariate data
Application 2: Synthetic Control Arm

- A POC study comparing a new drug X to Adalimumab for RA
 - 2:1 randomization ratio: X 30; Ada: 15
- Created a synthetic placebo arm as common control
 - Placebo patients available from 3 recently completed clinical trials
 - Used individual level data matched by baseline characteristics
 - Propensity score matching based on baseline covariates
Application 2: Synthetic Control Arm

- Comparing to a synthetic placebo arm with Propensity Score Matching

PS analysis
- T: 45
- P:

Matching
- T: 45
- P: 45

Analysis: pairwise comparison
- X: 30
- ADA: 15
- Placebo: 45

<table>
<thead>
<tr>
<th>Matching Ratio (Treated: Placebo)</th>
<th>N_X: N_ADA: N_PBO</th>
<th>Two-Group Comparison Power (ADA vs. PBO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>30:15:45</td>
<td>82%</td>
</tr>
<tr>
<td>1:2</td>
<td>30:15:90</td>
<td>87%</td>
</tr>
<tr>
<td>1:3</td>
<td>30:15:135</td>
<td>88%</td>
</tr>
</tbody>
</table>

Propensity score matching
Application 2: Synthetic Control Arm

A Pilot study
- Comparing Ph2 trial result versus Ph2 treatment + Ph3 Placebo with of 4 PS-methods

Phase 2 Study

PS Analysis

Summary of results: ACR20 (Binary)

<table>
<thead>
<tr>
<th>Approach</th>
<th>N_{trt}: N_{pho}</th>
<th>Absolute Difference</th>
<th>Odds Ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate 95% CI</td>
<td>P-value</td>
<td>Estimate 95% CI</td>
<td>P-value</td>
</tr>
<tr>
<td>Original Study550</td>
<td>55:55</td>
<td>0.236 (0.037, 0.436)</td>
<td>0.022</td>
<td>2.636 (1.218, 5.705)</td>
</tr>
<tr>
<td>Combined Dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratifying by PS</td>
<td>54:159</td>
<td>0.276 (0.102, 0.449)</td>
<td>0.002</td>
<td>3.151 (1.483, 6.695)</td>
</tr>
<tr>
<td>Matching by PS</td>
<td>38:38</td>
<td>0.270 (0.034, 0.506)</td>
<td>0.025</td>
<td>3.160 (1.217, 8.204)</td>
</tr>
<tr>
<td>Weighting by PS</td>
<td>54:159</td>
<td>-</td>
<td>-</td>
<td>2.596 (1.051, 6.413)</td>
</tr>
<tr>
<td>Logistic regression adjusting for PS</td>
<td>54:159</td>
<td>-</td>
<td>-</td>
<td>3.354 (1.580, 7.118)</td>
</tr>
</tbody>
</table>
Application 2: Synthetic Control Arm

- Used Independent Statistician to select matching controls prior to database lock
Application 2: Synthetic Control Arm

- Plan
 - Six demographic and 11 baseline disease characteristic covariates
 - Total eight scenarios
 - PS modeling: logistic with or without Firth penalty
 - Matching algorithm: greedy and optimal with different caliper
 - Matching ratio: 1:1 or 2:1
 - Criteria: standardized mean difference (SMD) of covariates and number of matched treatment subjects

- Data
 - Enrolled 48 subjects
 - More than 700 external placebo subjects
Application 2: Synthetic Control Arm

- Results
 - Final model: logistic with Firth, greedy (caliper=0.8), 2:1 ratio
 - all matched
 - SMD: mean=0.036, max=0.09
 - Alternative models
 - When using caliper=0.2, three subjects cannot be matched
 - Balancing was similar in terms of SMD

- Data analysis
 - Matched data set incorporated into database
 - Comparison of drug X and Ada to synthetic placebo arm
 - Tables created through the same TFL production
Conclusions

- Drug development cost is skyrocketing and timeline is protracting.
- Data is accumulating in many disease areas
- Incorporating external data to new trial can help to accelerate drug development
- External control data has high quality
- Incorporating to substitute a control arm or create a synthetic control arm
- No free lunch
 - A smaller in-trial control arm leading to high variability
 - A synthetic control arm may bias comparison
References

FDA (2019a) Adaptive Designs for clinical trials of drugs and biologics

FDA (2019b) Interacting with the FDA on complex innovative trial designs for drugs and biological products

References

Schmidli, Heinz, Sandro Gsteiger, Satrajit Roychoudhury, Anthony O’Hagan, David Spiegelhalter, and Beat Neuenschwander. 2014. “Robust Meta-Analytic-Predictive Priors in Clinical Trials with Historical Control Information.”

Biometrics 70 (4): 1023–32.